

Trifyl, c'est: CC Carmausin CC du Cordais et du Causse Ségala Carmausin /alence - Valdériès CA Gaillac-Graulhet CC des Monts d'Alban CC Centre Tarn CC des Monts de Lacaune CC Sor et Agout **CA Castres-Mazamet CC Minervois** Saint-Ponais

- Un service public créé en 1999
- ► Adhérents : 14 intercommunalités chargées de la collecte des déchets sur le Tarn, une partie de la Haute-Garonne et de l'Hérault
- Territoire: plus de 6 700 km², 358 communes, 329 000 habitants + Clients (380 000 habitants)
- ► 300 000 Tonnes de déchets ménagers et assimilés traités

Missions:

- regroupement et le transport des déchets ménagers vers les sites de traitement,
- valorisation par le recyclage (papiers et emballages ménagers) et la production énergétique pour les autres déchets
- traitement et la valorisation des biodéchets et déchets résiduels

Un double défi : Réduire la poubelle noire & Valoriser l'intégralité des déchets

197 kg de déchets | PAR HABITANT

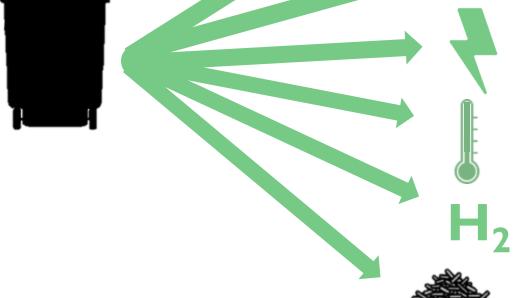
Méthanisation et compostage des biodéchets

L'énergie des déchets : un potentiel à développer

Biométhane – 85GWh/an 10% besoins foyers Tarn

Biocarburant – 52MWh/an

Électricité – 37GWh/an (cogénération/photovoltaïque)

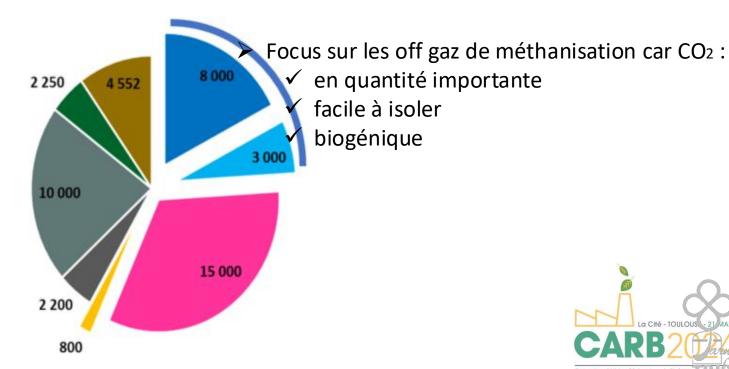

Chaleur – 20GWh/an bois 10GWh/an cogénération

Hydrogène – 1,2 tonne/jour

Combustible de récupération 90GWh/an + 60GWh/an autoco.

Et d'autres pistes au travail ...

- ✓ Biohythane,
- ✓ Pyrogazéification,
- ✓ Méthanation
- ✓ Valorisation du CO₂...



Avant-propos (1)

- Dans le cadre de la valorisation maximale de ses sites, Trifyl travaille depuis plusieurs années sur la question de la valorisation du CO₂ (ex : bicarbonate, méthanation biologique
- En **2022**, réalisation d'une **étude de faisabilité** par Voltigital et AgroEnergie :

Avant-propos (3)

- Objectif du projet actuel → Capturer et valoriser les flux de CO2 issus :
- Des Offgaz méthanisation UTVD
- Des Offgaz méthanisation unité CVE
- Des Offgaz biogaz bioréacteur Trifyl ?
- Utilisation envisagée : Liquéfaction du CO₂ contenu dans ces Offgaz et vente : besoin en CO₂

Description des flux de CO₂ – Digesteurs Trifyl (2)

- Les biogaz produits sont épurés par des membranes Clarke Energy
- Après épuration, production moyenne de :
- 660 Nm³/h de biométhane
- 540 Nm³/h de off-gaz

Vue aérienne des digesteurs Trifyl

Description des flux de CO₂ – Méthaniseurs Trifyl (3)

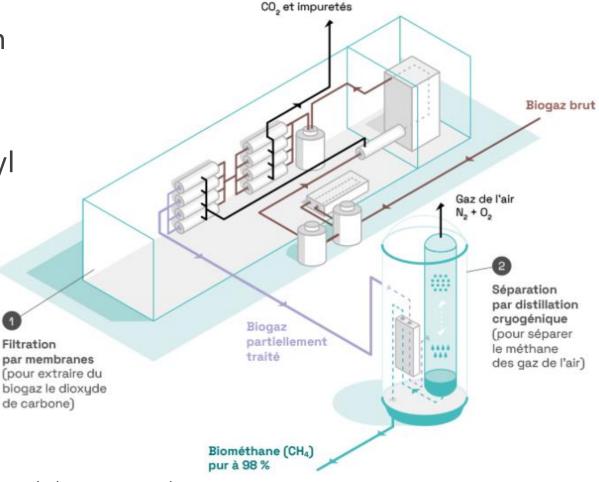
Elément	% Volumique	Débit (Nm³/h)	Débit (kg/h)
CO2	98,85	531,5	1044
CH4	0,72	3,9	3
N2	0,04	0,2	0
O2	0,23	1,2	2
H2O	0,16	0,9	1
Total	100	537,7	1049

• L'installation d'épuration est dimensionné pour traiter des pics de biogaz, qui donne un débit maximum de CO₂ de 750 Nm³/h.

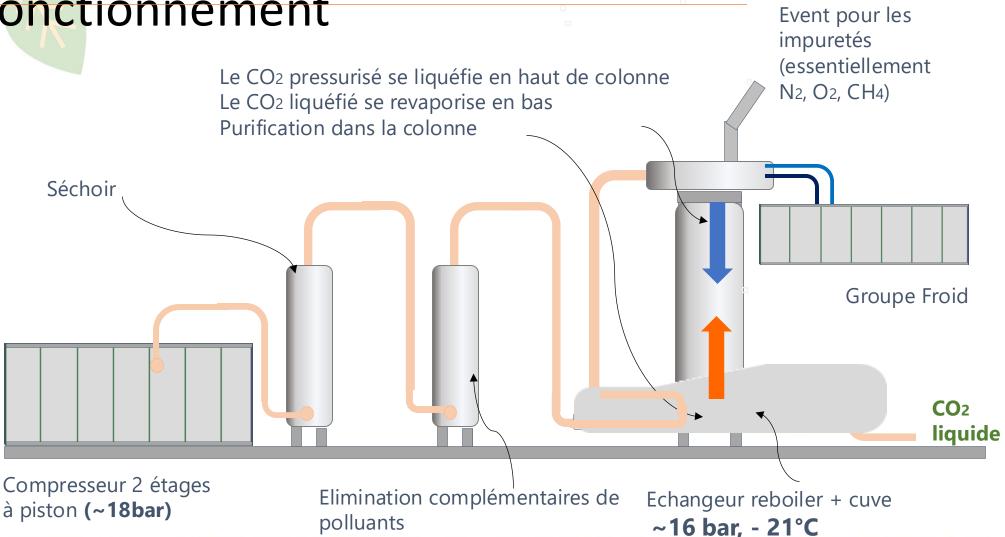
Description des flux de CO₂ – Méthaniseur CVE

- Epuration membranaire du biogaz au niveau d'une technologie Clarke Energy → Après épuration, production moyenne de :
- 360 Nm³/h de biométhane
- 240 Nm³/h de off-gaz

Elément	% Volumique	Débit (Nm³/h)	Débit (kg/h)
CO2	99,38	239,7	470,9
CH4	0,36	0,9	0,6
N2	0,01	0,0	0,0
O2	0,24	0,6	0,8
H2O	0	0,0	0,0
Total	100	241,2	472,4


On estime le potentiel de production de CO2 liquide annuel de ce flux **entre 3200 et 4000 tonnes.**

Description des flux de CO₂ – Le bioréacteur Trifyl (1)


 Projet d'installation d'une unité de valorisation du biogaz issu du bioréacteur de Trifyl : Type Wagabox

• Prévu en 2026

Liquéfacteur de CO₂ – Schéma de fonctionnement

Localisation potentielle de l'unité

Localisation de l'épurateur membranaire Trifyl

Localisation de l'épurateur membranaire CVE


Qualité du CO₂

- Si vente hors IAA: La règlementation ne spécifie pas de qualité particulière du CO₂ (possible durcissement de la réglementation?)
- Possibilité de travailler sur le développement d'une filière de production en qualité alimentaire afin de :
- Vendre le gaz carbonique à un plus large panel d'utilisateurs
- Et avec un meilleur potentiel de rentabilité ?
- Difficultés :
- Nécessite le respect de nombreuses règlementations/normes
- Investissements de départ plus élevés (analyseurs, unité de purification)
- Dans le cas des offgaz de Trifyl, questionnement possible sur la traçabilité des OMR

- Afin de sécuriser les débouchés du CO₂, réflexion sur des clients potentiels
- Objectif : Favoriser les structures locales (Occitanie)
- Producteur de spiruline
 Glace carbonique, nettoyage
 cryogénique
 Industries agroalimentaires
 Production de boissons gazeuses

